The RPKI & Origin Validation

RIPE / Praha
2010.05.03

Randy Bush <randy@psg.com>
Rob Austein <sra@isc.org>
Steve Bellovin <smb@cs.columbia.edu>

And a cast of thousands! Well, dozens :)}
Routing is Very Fragile

• How long can we survive on *The Web as Random Acts of Kindness*, TED Talk by Jonathan Zittrain?
Routing Mistakes

• Routing errors are significant and have very high customer impact
• We need to fix this before we are crucified in the WSJ a la Toyota
• 99% of mis-announcements are accidental originations of someone else’s prefix -- Google, UU, IIJ, ...
Why Origin Validation?

• Prevent YouTube accident
• Prevent 7007 accident, UU/Sprint 2 days!
• Prevents most accidental announcements
• Does not prevent malicious path attacks such as the Kapela/Pilosov DefCon attack
• That requires “Path Validation” and locking the data plane to the control plane, the next steps, by my children
This is Not New

• 1986 – Bellovin identifies vulnerability
• 2003 – NANOG S-BGP Workshop
• 2006 – ARIN & APNIC start work on RPKI. RIPE starts in 2008.
• 2009 – RPKI Open Testbed and running code in test routers
• 2009 – ISOC discovers problem
The Goal

• Keep the Internet working!!
• Seriously reduce routing damage from mis-configuration, mis-origination

Non-Goals

• Prevent Malicious Attacks
• Keep RIRs in business by selling X.509 Certificates
Resource Public Key Infrastructure (RPKI)
X.509 Certificate w/ 3779 Ext

- X.509 Cert
- RFC 3779 Extension
 - Describes IP Resources (Addr & ASN)
- SIA - URI for where this Publishes
- Owner’s Public Key
Being Developed & Deployed by RIRs and Operators
Certificate Hierarchy follows Allocation Hierarchy
That's Who Owns It but Who May Route It?
Route Origin Authorization (ROA)

- **Owning Cert**
 - 98.128.0.0/16
 - 147.28.0.0/16
 - Public Key

- **EE Cert**
 - 98.128.0.0/16
 - Public Key

- **ROA**
 - 98.128.0.0/16
 - AS 42

End Entity Cert can not sign certs, can sign other things e.g. ROAs

This is not a Cert. It is a signed blob.
PSGnet /16
Experimental Allocation from ARIN

Announces 256 /24s

Too Many EE Certs and ROAs, Yucchhy!
ROA Aggregation Using Max Length
Allocation in Reality

My Infrastructure

Static (non BGP) Cust

BGP Cust

Unused
ROA Use

My Aggregate ROA

Customer ROAs

I Generate for 'Lazy' Customer

My Infrastructure

BGP Cust

Static (non BGP) Cust

Unused

2010.05.03 RIPE RPKI
Running Code
And the Three RPKI Protocols
Big, Centralized, & Scary
We Don’t Do This

RPKI DataBase
- IP Resource Certs
- ASN Resource Certs
- Route Origin Attestations
A Player (CA) Publishes All Certificates Which They Generate in Their Own Unique Publication Point
RCynic Cache Gatherer
(cynical rsync)

IANA

ARIN

UUNET

UUncust

PSGnet

APNIC

IIJ

Validated Cache

Trust Anchor
Reliability Issue

Expensive To Fetch & Unreliable

IANA
IANA

ARIN
IANA

ARIN
IANA

APNIC
IANA

APNIC
IANA

UUNET
IANA

UUNET
IANA

PSGnet
IANA

PSGnet
IANA

UUCust
IANA

UUCust
IANA

IIJ
IANA

IIJ
IANA

Validated Cache
IANA

RCynic Gatherer
IANA

Trust Anchor
IANA
Reliability Via Hosted Publication

Reducing the Number of Publication Points Makes RCynic More Efficient
A Usage Scenario

User Web GUI

Mac

Front End GUI & Management

IR’s Database(s)
My RightsToRoute
Delegations to Custs

Resources [OrgID]

Public RPKI Keys
Internal CA Data
Up/Down EE Public Keys
My Misc Config Options
Certs Issued to DownStreams
Issued ROAs

ID=Me

RPKI Engine

Up/Down Protocol

Publication Protocol

Publication Point

Contract Out To Google

2% of an RIR’s Users
90% of an RIR’s IP Space

98% of an RIR’s Users
10% of an RIR’s IP Space

90% of an RIR’s Users
2% of an RIR’s IP Space

98% of an RIR’s Users
10% of an RIR’s IP Space

90% of an RIR’s Users
2% of an RIR’s IP Space

2010.05.03 RIPE RPKI
Origin Validation

• Cisco IOS and IOS-XR test code have Origin Validation now
• Work continues daily in test routers
• Compute load much less than ACLs from IRR data, 10µsec per update!
• Expect other vendor soon
RPKI -> Router

The Third Protocol (origin validation only)

Global RPKI

Object Security RCyncic

RCyncic Gatherer

Cache / Server

Transport Security ssh

RPKI to Rtr Protocol

BGP Decision Process

Near/In PoP
Typical Exchange

Cache Router
| <----- Reset Query --------- | R requests data
| |
| ----- Cache Response -------> | C confirms request
| ------- IPvX Prefix --------> | C sends zero or more
| ------- IPvX Prefix --------> | IPv4 and IPv6 Prefix
| ------- IPvX Prefix --------> | Payload PDUs
| ------ End of Data --------> | C sends End of Data
| | and sends new serial

~

| -------- Notify ----------> | (optional)
| |
| |
| <----- Serial Query ------- | R requests data
| |
| ----- Cache Response -------> | C confirms request
| ------- IPvX Prefix --------> | C sends zero or more
| ------- IPvX Prefix --------> | IPv4 and IPv6 Prefix
| ------- IPvX Prefix --------> | Payload PDUs
| ------ End of Data --------> | C sends End of Data
| | and sends new serial

~
IPv4 Prefix

<table>
<thead>
<tr>
<th>Protocol</th>
<th>PDU</th>
<th>Version</th>
<th>Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

```
+-------------------------------------------+
|                                           |
|                 Length=20                 |
|                                           |
+-------------------------------------------+
|                                           |
|          |  Prefix  | Max    | Data |
|  Flags   |  Length  | Length | Source |
|          |   0..32  | 0..32  | RPKI/IRR |

IPv4 prefix

Autonomous System Number
# IPv6 Prefix

<table>
<thead>
<tr>
<th>Protocol</th>
<th>PDU</th>
<th>Version</th>
<th>Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

---

Length=40

---

<table>
<thead>
<tr>
<th>Flags</th>
<th>Length</th>
<th>Max Length</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0..128</td>
<td>0..128</td>
<td>RPKI/IRR</td>
</tr>
</tbody>
</table>

---

IPv6 prefix

---

Autonomous System Number

---

2010.05.03 RIPE RPKI
Extremely Large ISP Deployment
router bgp 4128 bgp router-id 198.180.152.251
   bgp rpki cache 198.180.150.1 42420 refresh-time 600
address-family ipv4 unicast
bgp dampening collect-statistics ebgp
redistribute static route-policy vb-ebgp-out
...
Result of Check

• **Valid** – A matching/covering ROA was found with a matching AS number

• **Invalid** – A matching or covering ROA was found, but AS number did not match, and there was no valid one

• **Not Found** – No matching or covering ROA was found
Prefix validation logic

1. query key = <BGP destination, masklen>, data = origin AS
2. result = BGP_PFXV_STATE_NOT_FOUND
3. walk prefix validation table to look for the query key
4. for each matched “entry” node in prefix validation table,
5.     prefix_exists = TRUE
6.     walk all records with different maxLength values
7.     for each “record” within range (query masklen <= maxLength)
8.         if query origin AS == record origin AS
9.             result = BGP_PFXV_STATE_VALID
10.            return (result)
11.        endif
12.    endfor
13. endfor
14. if prefix_exists == TRUE,
15.    result = BGP_PFXV_STATE_INVALID
16. endif
17. return (result)
Policy Override Knobs

- Disable Validity Check Completely
- Disable Validity Check for a Peer
- Disable Validity Check for Prefixes

When check is disabled, the result is “Not Found,” i.e. as if there was no ROA
### Show commands

**RP/0/5/CPU0:ios#show bgp rpki prefix-validation database**

Thu Jul 16 15:56:43.805 UTC

<table>
<thead>
<tr>
<th>Network</th>
<th>Maxlen</th>
<th>Origin-AS</th>
<th>Color</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0.0.0/4</td>
<td>6</td>
<td>200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.1.0.0/16</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.0.0.0/24</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.0.0.0/8</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.0.0.0/24</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.0.0.0/24</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.0.0.0/6</td>
<td>8</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.0.0.0/8</td>
<td>24</td>
<td>36394</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11.0.0.0/16</td>
<td>24</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12.0.0.0/8</td>
<td>8</td>
<td>7018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20.137.0.0/21</td>
<td>21</td>
<td>4237</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Defaults

- Origin Validation is Enabled if you have configured a cache server peering

- RPKI Poll Interval is 30 Minutes

- No Effect on Policy unless you have configured it
An ISP's ROAs

# <prefix>/<length>-<maxlength> <asn> <group>
#
64.9.224.0/19-24 15169 ARIN
74.125.0.0/16-24 15169 ARIN-3
72.14.192.0/18-24 15169 ARIN-3
72.14.224.0/24-24 36384 ARIN-3
72.14.230.0/24-24 36384 ARIN3
64.233.160.0/19-24 15169 ARIN-3
64.9.224.0/19-24 36492 ARIN
66.102.0.0/20-24 15169 ARIN-3
66.249.64.0/19-24 15169 ARIN-3
66.249.80.0/20-24 15169 ARIN-3
72.14.192.0/18-24 15169 ARIN-3
74.125.0.0/16-24 15169 ARIN-3
173.194.0.0/16-24 15169 ARIN-3
209.85.128.0/17-24 15169 ARIN-3
216.239.32.0/19-24 15169 ARIN-3
2001:4860::/32-64 15169 ARIN-3
RP/0/1/CPU0:r0.dfw#show bgp 192.158.248.0/24
BGP routing table entry for 192.158.248.0/24
Versions:
  Process           bRIB/RIB  SendTblVer
  Speaker             132327      132327
Last Modified: Oct  2 01:06:47.630 for 13:33:12
Paths: (6 available, best #3)
  Advertised to peers (in unique update groups):
    204.69.200.26
    Path #1: Received by speaker 0
    2914 1299 6939 6939 27318
    157.238.224.149 from 157.238.224.149 (129.250.0.85)
      Origin IGP, metric 0, localpref 100, valid, external,
      origin validity state: valid
    Path #2: Received by speaker 0
    ...

2010.05.03 RIPE RPKI
RP/0/1/CPU0:r0.dfw#sh bgp 64.9.224.0
BGP routing table entry for 64.9.224.0/20
Versions:

<table>
<thead>
<tr>
<th>Process</th>
<th>bRIB/RIB</th>
<th>SendTblVer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speaker: 0
SendTblVer: 0

Last Modified: Oct 2 17:38:27.630 for 4d22h
Paths: (6 available, no best path)
Not advertised to any peer
Path #1: Received by speaker 0
2914 3356 36492
157.238.224.149 from 157.238.224.149 (129.250.0.85)

Origin IGP, metric 2, localpref 100, valid, external,
origin validity state: invalid
RP/0/1/CPU0:r0.dfw#sh bgp 147.28.0.0
BGP routing table entry for 147.28.0.0/16
Versions:
    Process           bRIB/RIB    SendTblVer
    Speaker           337691      337691
Last Modified: Oct 2 17:40:16.630 for 4d22h
Paths: (6 available, best #1)
    Advertised to peers (in unique update groups):
        204.69.200.26
    Path #1: Received by speaker 0
        2914 3130
        157.238.224.149 from 157.238.224.149 (129.250.0.85)
        Origin IGP, metric 68, localpref 100, valid, external, \n        origin validity state: not found
iBGP Hides Validity State

iBGP Full Mesh

valid

invalid

unknown

which do i choose?
why do i choose it?
Unknown Beat Valid!

r1.iad#sh ip bg 198.180.152.0

BGP routing table entry for 198.180.152.0/24, version 324176

Paths: (2 available, best #1, table default)

Not advertised to any peer

2914 4128

129.250.10.157 (metric 1) from 198.180.150.253
(198.180.150.253)

Origin IGP, metric 51, localpref 100, valid, internal, **best**


1239 2914 4128

144.232.18.81 from 144.232.18.81 (144.228.241.254)

Origin IGP, metric 0, localpref 100, valid, external

Community: 3927:380

Sovc state **valid**
r1.iad#sh ip bg 147.28.0.0
BGP routing table entry for 147.28.0.0/16, version 142233
Paths: (2 available, best #1, table default)

Not advertised to any peer

2914 3130

129.250.10.157 (metric 1) from 198.180.150.253 (198.180.150.253)
Origin IGP, metric 105, localpref 100, valid, internal, best

1239 3130

144.232.18.81 from 144.232.18.81 (144.228.241.254)
Origin IGP, metric 653, localpref 100, valid, external
Community: 3927:380
Sovc state valid
The Solution is to Allow Operator to Test and then Set Local Policy
Secure

route-map validity-0
  match rpki-invalid
  drop
route-map validity-1
  match rpki-not-found
  set localpref 50
  // valid defaults to 100
Paranoid

route-map validity-0
match rpki-valid
set localpref 110

route-map validity-1
drop
After AS-Path

route-map validity-0
  match rpki-unknown
  set metric 50
route-map validity-1
  match rpki-invalid
  set metric 25
// valid defaults to 100
The Open TestBed

- ARIN
- ISC
- Google
- RGnet
- JPNIC
- Mesh
- IIJ
- Cristel
- APNIC
- BWC

Trust Anchor

ARIN
ISC
Google
BWC

Trust Anchor

APNIC
RGnet
JPNIC
JPNIC

IIJ
Cristel

*APNIC and ARIN are simulations constructed from public data

Level (3)

Level (3)

runs own RPKI to keep private key private and control own fate, but publishes at ARIN

until we get IANA to act as the parent

until we get IANA to act as the parent

runs own RPKI to keep private key private and control own fate, but publishes at IIJ

chocolate

2010.05.03 RIPE RPKI
The Big Speedbump

“We will never control Internet routing”
-- The RIRs
But Who Do We Trust?

Two digital certificates have been mistakenly issued in Microsoft's name that could be used by virus writers to fool people into running harmful programs, the software giant warned Thursday.

According to Microsoft, someone posing as a Microsoft employee tricked VeriSign, which hands out so-called digital signatures, into issuing the two certificates in the software giant's name on Jan. 30 and Jan. 31.

Such certificates are critical for businesses and consumers who download patches, updates and other pieces of software from the Internet, because they verify that the software is being supplied from a particular company, such as Microsoft.

RPKI Full Implementation
Available as Open Source

https://subvert-rpki.hactrn.net/

and there is a mailing list
Work Supported By

• US Government
  THIS PROJECT IS SPONSORED BY THE DEPARTMENT OF HOMELAND SECURITY UNDER AN INTERAGENCY AGREEMENT WITH THE AIR FORCE RESEARCH LABORATORY (AFRL).

• ARIN

• Internet Initiative Japan

• Cisco, Google, NTT, Equinix
Simple Parent and Simple Child

Up / Down Protocol

RPKI Engine

Internal Protocol

My Resources
Childs’ Resources

IR Back End

Registry Back Ends

My Resources
Childs’ Resources

Up / Down Protocol
## Serial Query

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>PDU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Type</td>
<td>reserved = zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length=12

Serial Number
### Protocol PDU Format

<table>
<thead>
<tr>
<th>Protocol</th>
<th>PDU</th>
<th>Version</th>
<th>Type</th>
<th>reserved = zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

- Length = 12
- Serial Number