DNSSEC Support by Home Routers in Germany

Thorsten Dietrich

Federal Office for Information Security

RIPE-60 / 06. May 2010
Content

- Motivation / BSI activities
- Previous Tests
- Objectives
- Test Methodology / Testbed
- Reviewed Devices
- Results
- Conclusions
Motivation / BSI-Activities

- DNS is crucial part of Internet-infrastructure
- Vulnerable by design
- DNSSEC helps to improve the security of the internet
- Adoption of DNSSEC strongly required from BSI point of view
- Launch of DNSSEC-Initiative by DENIC, eco (german provider association) and BSI to evaluate the introduction of DNSSEC for .de domains
 - DENIC: Provision of test environment for collecting and reviewing operational and technical experiences
- Raising awareness, discussions with public and private sector, universities
- German government domain “.bund.de” was signed a few weeks ago
- Home router study
Previous Tests

- **Origin in 2007:**
 DNSSEC-signed zones were suddenly unreachable for some users in Sweden
 → Reason: Some Home Routers couldn't handle DNSSEC-Flags
- **Tests of Home Router capabilities in Sweden (Feb. 2008) and GB (Sept. 2008) followed**
- **Findings:**
 - Only few devices could **proxy** DNSSEC queries without limitations
 - Most devices could **route** DNSSEC queries to upstream resolvers
- **Tested devices mostly relevant for Swedish / British market**
- **Further development / technical progress since 2008?**
- **Specification of IETF RFC 5625 „DNS Proxy Implementation Guidelines“**
- → **Necessity to examine the situation in Germany**
Objectives of BSI-Study

- Assess router support for DNS queries relating to DNSSEC-signed domains
 - Is the router able to **proxy** DNSSEC requests?
 - Is the router able to **route** DNSSEC requests?
 (Bypassing the integrated DNS-Proxy)
- In detail:
 - Handling of Signaling-Flags (D0, AD, CD), introduced with DNSSEC
 - Handling of UDP-Packets > 512 Byte (EDNS0 Support)
 - TCP-Fallback
- Other security issues, i.e. factory security settings for Wireless-LAN

Study published under

Test Methodology

- Several DNS queries of various Resource Records to examine capabilities
 - UDP and TCP-based queries
 - EDNS0 queries with various buffer sizes
 - Resource Records with various length
 - Signed and unsigned Resource Records
 - Use of DNSSEC-related flags
- Using and bypassing of internal DNS-proxy
Testbed

- DNS-client
- DNSSEC-aware caching-resolver
- DSLAM
- Authoritative nameserver

Simulation of home DSL-connection

N.B.: Internet-based tests not reliable, i.e. due to lack of configuration parameter for queried caching-resolver
Reviewed Devices

- 36 devices tested
- Thereof 23 with integrated DSL-modem
- Study considers about 90% of home routers supplied by broadband providers
- BUT: No representative study
- Support by different ISPs (20 devices) and manufacturers (no hidden study)
- Additionally: Tests of some devices from German “free market”
- Each router was tested in supplied condition with factory defaults
Content

- Motivation / BSI activities
- Previous Tests
- Objectives
- Test Methodology / Testbed
- Reviewed Devices
- Results
- Conclusions
Test scenarios
1. Proxy DNS queries

- DNSSEC-validation by caching-resolver of ISP
 - Client queries DNS-proxy of home router without setting of DNSSEC-bits
 - DNS-caching-resolver answers with SERVFAIL or NXDOMAIN if validation fails
 - No modification of hard- and software from user needed
Test Results
DNS-proxy: RFC-1035 Compliance

Can the router proxy standard DNS queries over UDP?

- 3 devices could not handle all Resource Records (RR) types
- Excluded from further proxy-tests
Test scenarios
2. Proxy DNSSEC queries

- DNSSEC-validation by caching-resolver of ISP
 - Client is DNSSEC-aware and sets DO
 - DNS-caching-resolver delivers signatures and sets AD in case of successfully validated domain

Diagram:
- User Operating System
- Stub Resolver
- Home Router with DNS-Proxy
- ISP Caching-Resolver
- Name-server
- UDP-packet > 512 byte OR TC = 1
- EDNS0 Bufsize = xxx
- DO = 1
- EDNS0 Bufsize = ??
- DO = ??
- UDP-packet > 512 byte OR TC = 1
- AD = 1
Main problems:
- Packets were discarded
- TC was not set or passed through
Does the router accept DNS queries over TCP?

- 8 DNS-proxies accept DNS queries over TCP.
- 25 DNS-proxies accept DNS queries only over UDP.

- Only 8 DNS-proxies accept DNS queries over TCP.
Test Results
EDNS0 or TCP Compatibility

- Fully EDNS0 or TCP compatible
- Only EDNS0
- Only TCP
- No Support

No integrated DNS-proxy supported both EDNS0 and TCP
Test Results
DNSSEC-Flags Compatibility

Can the router proxy DNS(SEC) queries that set DNSSEC-related flags?

- Most devices can handle DNSSEC-flags
- 3 devices modify DNSSEC-flags
- 1 device returns „Connection Timeout“ with AD or CD set
Only 9 of 33 tested DNS-proxy implementations fully support DNSSEC.

Additionally, 7 devices have limited support (Answering packet size < MTU-size).

Overall DNSSEC-compatibility of DNS-proxy:
- 9 fully support DNSSEC
- 7 have limited support (MTU-size)
- 17 are incompatible
All proxies with caching-function had problems to distinguish between DNSSEC and non-DNSSEC queries. That leads to problems in mixed environments.
Test scenarios
3. Route DNS(SEC)-Queries

- Direct DNSSEC-queries to ISP caching-resolver
Test Results
Bypass of DNS Proxy

Can the router route DNS(SEC) queries with set of DNSEC-related flags and use of EDNS0?

- 30 devices
- 6 devices only via TCP-fallback, due to routing limitations with fragmented packets
- All tested devices fully support DNSSEC when the implemented DNS-proxy is bypassed

EDNS0 & TCP
only TCP
Test Results
Configuration of DHCP DNS parameters

- With LAN DHCP defaults many (30) devices supply themselves as the local DNS
- Some (5) devices supply the ISP's DNS address, inherited from WAN link
- Unfortunately 6 devices with a DNSSEC incompatible DNS-Proxy have no DHCP configuration option

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Manual configuration of DHCP DNS parameters possible</th>
<th>Manual configuration of DHCP DNS parameters not possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated DNS-proxy DNSSEC-capable</td>
<td>9 (Default proxy: 9) (Default ISP: 0)</td>
<td>0</td>
</tr>
<tr>
<td>Integrated DNS-proxy with limited DNSSEC-support</td>
<td>7 (Default proxy: 5) (Default ISP: 2)</td>
<td>0</td>
</tr>
<tr>
<td>No DNSSEC-support by integrated DNS-proxy</td>
<td>11 (Default proxy:10) (Default ISP: 1)</td>
<td>6 (Default proxy: 5) (Default ISP: 1)</td>
</tr>
<tr>
<td>Incomplete DNS-proxy implementation</td>
<td>2 (Default proxy:1) (Default ISP: 1)</td>
<td>1 (no DHCP)</td>
</tr>
</tbody>
</table>
Test Results
DNSSEC-Compatibility

- 15 devices are DNSSEC-compatible with factory defaults, due to the fact that either the implemented DNS-proxy fully supports DNSSEC or they provide the ISP's DNS-server settings via DHCP.
- 16 devices can be reconfigured to provide the ISP's DNS-server settings via DHCP.
- 5 devices lack reconfigurable DHCP DNS parameters.
Test Results
DNSSEC-Compatibility (ISP devices only)

DNSSEC-Compatibility of ISP supplied devices

- 4 devices are DNSSEC-compatible with factory defaults, due to the fact that either the implemented DNS-proxy fully supports DNSSEC or they provide the ISP's DNS-server settings via DHCP
- 11 devices can be reconfigured to provide the ISP's DNS-server settings via DHCP
- 5 devices lack reconfigurable DHCP DNS parameters
Conclusions

- **Non DNSSEC-aware client operating system:**
 - No compatibility issues

- **DNSSEC-aware client operating system:**
 - 15 devices can be used out of the box
 - 16 devices can be reconfigured to be DNSSEC compatible
 - 5 devices lack reconfigurable DHCP DNS parameters
 → individual reconfiguration of DNS settings on each client

- Compatibility issues mostly due to missing EDNS0- and TCP-support of built-in DNS-proxy
 - Only 9 of 36 devices have full DNSSEC proxy support
 - 7 devices have limited DNSSEC proxy support
 (packet size < MTU)
Comparison with .se und .uk studies

<table>
<thead>
<tr>
<th>Feature</th>
<th>.se</th>
<th>.uk</th>
<th>.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNS0 compatible</td>
<td>3/10</td>
<td>4/22</td>
<td>4/33</td>
</tr>
<tr>
<td>TCP-support</td>
<td>3/10</td>
<td>1/22</td>
<td>8/33</td>
</tr>
<tr>
<td>DNSSEC-flag support</td>
<td>7/10</td>
<td>16/22</td>
<td>29/33</td>
</tr>
<tr>
<td>DNSSEC compatible as router</td>
<td>-</td>
<td>24/24</td>
<td>36/36</td>
</tr>
<tr>
<td>DNSSEC compatible with factory settings</td>
<td>3/12 (25%)</td>
<td>6/24 (25%)</td>
<td>15/36 (42%)</td>
</tr>
<tr>
<td>DNSSEC compatible after reconfiguration</td>
<td>-</td>
<td>9/24 (38%)</td>
<td>16/36 (44%)</td>
</tr>
</tbody>
</table>
Perspective

- Results were communicated to Manufacturer's and ISP's
- Positive feedback
- One manufacturer already released beta-firmware with improvements
- Others want to adopt recommendations at least in future products
Thanks for your attention!

Questions?
Contact

Federal Office for Information Security (BSI)

Thorsten Dietrich
Godesberger Allee 185 - 189
53175 Bonn
Germany

thorsten.dietrich@bsi.bund.de
www.bsi.bund.de
www.bsi-fuer-buerger.de